AGA KHAN UNIVERSITY EXAMINATION BOARD Notes from E-Marking Centre HSSC-II Mathematics Annual Examinations 2023

Introduction

This document has been prepared for the teachers and candidates of Higher Secondary School Certificate (HSSC) Part II (Class XII) Mathematics. It contains comments on candidates' responses to the 2023 HSSC-II Examination indicating the quality of the responses and highlighting their relative strengths and weaknesses.

E-Marking Notes

This includes overall comments on candidates' performance on every question and *some* specific examples of candidates' responses which support the mentioned comments. Please note that the descriptive comments represent an overall perception of the better and weaker responses as gathered from the e-marking session. However, the candidates' responses shared in this document represent some specific example(s) of the mentioned comments.

Teachers and candidates should be aware that examiners may ask questions that address the Student Learning Outcomes (SLOs) in a manner that requires candidates to respond by integrating knowledge, understanding and application skills they have developed during the course of study. Candidates are advised to read and comprehend each question carefully before writing the response to fulfil the demand of the question.

Candidates need to be aware that the marks allocated to the questions are related to the answer space provided on the examination paper as a guide to the length of the required response. A longer response will not in itself lead to higher marks. Candidates need to be familiar with the command words in the SLOs which contain terms commonly used in examination questions. However, candidates should also be aware that not all questions will start with or contain one of the command words. Words such as 'how', 'why' or 'what' may also be used.

General Observations

Candidates performed really well in some concepts, such as, Chain Rule, Composite Functions and Analytic Geometry. However, candidates who did not score well mostly failed to understand the demands of the questions, often misinterpreting the command words and the stimuli.

Mentioned below are a few concepts that teachers need to focus so that the candidates may perform better.

- Derivative of Trigonometric Functions
- Techniques of Integration
- Plotting of linear Inequality, Feasible Region and Corner Points
- Circle and Tangent of the Circle
- Vector Algebra

Note: Candidates' responses shown in this report have not been corrected for grammar, spelling, format, or information.

DETAILED COMMENTS		
	Constructed Response Questions (CRQs)	
	Question No. 1	
Question Text	It is given that $f(x) = \frac{1}{(x-1)^2}$, $x \neq 1$ and $g(x) = x+1$ are two real valued functions.	
	For the given functions,	
	i. find $f \circ g$.	
	ii. calculate $f \circ g(-1)$.	
	iii. find $g^{-1}(x)$.	
SLO No.	12.2.2/12.4.2/12.5.2	
SLO Text	Find the composition of two functions. Find the corresponding values of composite functions for given values of a variable.	
Max Marks	Find the inverse of a function and its domain and range.	
Cognitive		
Level		
Checking	i. 1 mark for substituting $g(x) = x+1$ for x in $f(x)$	
Hints	ii. 1 mark for substituting for $x = -1$ in the $f \circ g$	
	iii. 1 mark for substituting $y = g(x)$ and rearrange to get $g^{-1}(x)$	
Overall Performance	Most of candidates successfully tackled this question, which involved composite functions, finding the value of a function at specific points, and understanding inverse functions. Such candidates followed all the required steps and met the demands of the question. However, few of the candidates faced some challenges with substituting the correct value of g in $f \circ g$.	
Description of	The three parts of the question were related to composite function, value of function at	
Better	any specified point and the inverse function. The better responses demonstrated grasp on	
Responses	these concepts through detailed and step by step application of the rules to find the mentioned.	
Image of Better Response	i. find $f \circ g$. $ \frac{f(x) = \frac{1}{(x-1)^{-1}}}{f \circ g = \frac{1}{(x+1)-1}} = \frac{f \circ g = \frac{1}{(x+1)-1}}{f \circ g = \frac{1}{f \circ g = \frac{1}{x^{-1}}} = \frac{f \circ g = \frac{1}{x^{-1}}}{f \circ g = \frac{1}{x^{-1}}} $ ii. calculate $f \circ g(-1)$. $ \frac{f \circ g = \frac{1}{x}}{f \circ g = \frac{1}{x}} $	
	fog(-1)= 1 (-1) ²	

	iii. find $g^{-1}(x)$.	
	g(n) = n + l	$g^{-}(n) = (n-1)$
	y= n+1	
	y-1 = M	
	$\tilde{g}'(n) = n - 1$	
Description of Weaker Responses	Weaker responses showed inappropriate s errors in simplification. Other observed functions or equating the functions with finding the value of the function. In inver- the function.	substitutions (in case of composite functions) and d errors included multiplication of the given a each other. Few errors were also observed in rse function, some candidates took the reciprocal
Image of Weaker Response	$\frac{1}{(x-1)^2} + \frac{x+1}{1} = \frac{1}{(x-1)^2}$ ii. calculate $f \circ g(-1)$. $\frac{1}{(x-1)^2} = \frac{x+1}{(x-1)^2}$ $\frac{\int f(x) g'(x) dx = f(x)}{\int (-1) g'(-1) dx = f(-1) g}$ iii. find $g^{-1}(x)$. $\frac{g^{-1} = (x+1)}{g'(x-1) = (x+1)}$ $\frac{g(x-1) = (x+1)}{g^{-1}(x-1)}$	$= \frac{1 + 2 + 1}{(x - 1)^{2} (1)}$ $= \frac{2x}{(x - 1)^{2}}$ $\frac{g(x) - \iint (x) g(x) dx}{(-1) - \iint f'(-1) g(-1) dx}$

How to Approach SLO	Pedagogy** Used for that SLO	Assessment Strategies
 Understand the expectations of the command words Look at the cognitive level Identify the content that is required to answer that question (both in terms of understanding of concepts and any skills that may be required like analysing or evaluating) Go through the past paper questions on that particular concept Refer to the resource guide for extra resources 	 Story Board Cause and Effect Fish and Bone Concept Mapping Audio Visual resources Think, Pair and Share Questioning Technique (Socratic approach) Practical Demonstration ** For description of each pedagogy, refer to Annexure A 	 Past paper questions Discussion on E-Marking Notes AKU-EB Digital Learning Solution powered by Knowledge Platform https://akueb.knowledgeplatform.com/login

Any Additional Suggestion:

To enhance better understanding of the concept, teachers are recommended to use the following strategies. Visual Representation: Use graphs or diagrams to visually illustrate function composition. Show how the output of one function becomes the input of another. Graph both the original function and its inverse to visually demonstrate their relationship. Discuss how the graphs are reflections across the line y = x. Interactive Activities: Incorporate interactive tools or software that allow students to input functions and see

the composition results in real-time. Real-Life Application: Showcase how function composition is applied in fields like economics, physics, or engineering. Connect the concept to practical scenarios. Connect function inverses to real-life scenarios where "reversing" an operation is essential, such as interest rate calculations or growth models.

Guided Practice: Give students practice problems with different functions to compose. Walk them through each step, highlighting the importance of proper order and input substitution.

K = Knowledge U = Understanding A = Application and other higher-order cognitive skills

	Question No. 29i	
Candidate	s were given the choice to attempt any TWO out of the three questions: 2a, 2b and 2c.	
Question Text	Find the derivative of the function $f(x) = (1 - x^2)^{\frac{1}{2}}$ with respect to x.	
SLO No.	13.1.8	
SLO Text	Find the derivative of algebraic functions by using direct method (power rule).	
Max Marks	2	
Cognitive Level	Α	
Checking	1 mark for differentiating the external power of the expression.	
Hints	1 mark for differentiating the inner function i.e. $(1 - x^2)$.	
Overall Performance	Majority of candidates attempted question 2ai and demonstrated an ability to apply the power rule for differentiating the provided function. This reflects a clear understanding of fundamental differentiation techniques. However, a subset of candidates encountered challenges when employing the power rule, indicating the need for targeted support in mastering this concept.	
Description of	Better responses showed the correct application of the direct rule of derivatives and	
Better	completing the differentiation process without any error in mathematical operations.	
Responses		
Images of	Image (i)	
Better	$f(x) = (1 - x^2)^{\frac{1}{2}}$	
Kesponses	$\frac{f(m) - (1 - m^{2})^{\frac{1}{2} - 1}}{dm} \frac{d(1 - m^{2})}{dm}$ $\frac{f'(m) = 1 (1 - m^{2})^{-\frac{1}{2}} (0 - 2m)}{2}$ $\frac{f'(m) = -\chi m}{2} = -\pi - m - m - m - m - m - m - m - m - m $	
	$\frac{f'(n) = \frac{1}{2} (1 - n^2)^{\frac{1}{2} - 1} \times (-2n)}{f'(n) = \frac{1}{2} (1 - n^2)^{\frac{1}{2}} \cdot (-2n)}$ $\frac{f'(n) = \frac{1}{2} \cdot (1 - n^2)^{\frac{1}{2}}}{(1 - n^2)^{\frac{1}{2}}}$ $\frac{f'(n) = -n}{\sqrt{1 - n^2}}$	

Description of	Weaker responses revealed that candidates could not recall and apply the power rule of		
Weaker	derivation. Some of the candidates applied the power rule, but did not apply the derivative		
Responses	on the inner function (that was base function). Moreover, some candidates either		
Imagag of	differentiated the terms separately or differentiated only the power of the function.		
mages of weaker			
Responses	$(1,1)(1,\pi^{2})^{\frac{1}{2}}$		
•	$-\frac{1}{2} \left(\chi \right)_{2} \left(1 - \kappa \right)_{n}^{2}$		
	$dy = -\frac{1}{2}(x+1-x^2)\frac{1}{2}(x)$		
	$dn (1-n^2)^{1/2}$		
	$dy = \int (x) \left[1 - x^2 \right]^{1/2}$		
	$dx = \frac{1-x^{2}}{1-x^{2}}$		
	$\int dy = f(x) [x^{\perp}]$		
	dr. gus		
	Image(ii)		
	$f(x) = (1 - x^2)^{\frac{1}{2}}$ $dy = 1 - x^2 = 1 - 2^2$		
	Selution dr		
	n = n + 1 $n = 1 + 1 + 1 + 2$		
	dn da		
	du 1 2-1 1 2-2 du 1 4		
	3 = 21 - n = 1 - 2		
	On On 1-2		
	Question No. 2aii		
Question Text	For $y = (2x-1)^2 \times (1-e^x)$, find $\frac{dy}{dx}$.		
SLO No.	13.2.1		
SLO Text	Find the derivative of d) product of two functions.		
Max Marks	3		
Cognitive	A		
Checking	1 mark for writing the function in terms of product rule		
Hints	1 mark for differentiating $1 - a^x$ connectly.		
	1 mark for differentiating $(2x-1)^2$ correctly.		
Overall	Majority of candidates attempted this question with accurate results, indicating a		
Performance	satisfactory understanding of the concept. While there were few candidates who did not		
	meet the question requirement and made mistakes in applying product rule correctly.		
Description of Bottor	Better responses showed the correct solution process by correctly applying the product rule and correct differentiation of the functions separately		
Better Responses	and correct unreferitiation of the functions separately.		
responses			

Images of Image (i) **Better** $(2x-1)^2 \cdot (-e^x) + (1-e^x) = (2x-1)(2)$ dy Responses = $(2x - 1)^{2} \cdot (-e^{x}) + (1 - e^{x}) + (2x - 1)$ = (42+42+1)(-ex) + (1-ex) (82-4) = -4e222-4e22-e2+82-4-8e2+4e2 $= -4e^{2}x^{2} - 12e^{2}x + 3e^{2} + 8x - 4$ dx e Image (ii) $= \frac{\partial}{\partial x} (2x-1)^2 \cdot (1-e^{x})$ & (f@.gbi trad drtgrd fr $\frac{\partial}{\partial x} (2x-1)$ 2x-1) **Description of** Weaker responses exhibited that there were challenges in correct application of the product rule, even though this formula was provided in the formula sheet. Moreover, there were Weaker errors in finding the derivatives of the separate functions during applying the product rule. Responses Specifically, some of the candidates made errors in the derivative of the exponential function. Image (i) **Images of** weaker $2x - 1) x (1 - e^{x})$ **Responses** $1)^{2} = 0^{2} = 2(2\pi)^{2}$ $(1 - e^{n})$ - V -2x-212-11/1 -ex $= 2(2\pi-1)(1e^{3})$ **4** X

How to Approach SLO	Pedagogy Used for that SLO	Assessment Strategies
 Understand the expectations of the command words Look at the cognitive level Identify the content that is required to answer that question (both in terms of understanding of concepts and any skills that may be required like analysing or evaluating) Go through the past paper questions on that particular concept Refer to the resource guide for extra resources 	 Story Board Cause and Effect Fish and Bone Concept Mapping Audio Visual resources Think, Pair and Share Questioning Technique (Socratic approach) Practical Demonstration 	 Past paper questions Discussion on E-Marking Notes AKU-EB Digital Learning Solution powered by Knowledge Platform https://akueb.knowledgeplatform.com/login

Any Additional Suggestion:

While teaching the concept of derivatives, teachers are advised to use the following strategies. These strategies collectively contribute to improving accuracy and confidence in differentiation outcomes. Offer focused practice exercises emphasising step-by-step product rule application.

Break down problems into smaller components to aid comprehension of derivative calculations for each function.

Address challenges related to the exponential function's derivatives with different algebraic expressions examples and explanations.

Advise students to thoroughly review the formulae included in the provided formula sheet.

~	Question No. 2bi	
Candidate	s were given the choice to attempt any TWO out of the three questions: 2a, 2b and 2c.	
Question Text	Find $\frac{dy}{du}$ for $y = 2x^2 - 1$ and $u = \frac{1 - 2x}{x}$.	
SLO No.	13.3.2	
SLO Text	Solve problems related to chain rule.	
Max Marks	3	
Cognitive Level	Α	
Checking Hints	1 mark for finding $\frac{dy}{dx} = 4x$. 1 mark for finding $\frac{du}{dx} = \frac{-1}{x^2}$. 1 mark for correctly feeding the derivatives in the chain rule.	
Overall Performance	Relatively lesser number of candidates attempted 2b. This part of 2b, i.e., 2bi tested candidates' ability to differentiate one function with respect to another function employing the chain rule of differentiation. Overall, majority of the candidates attempting this question scored full marks. However, there were few candidates who attempted this question partially or did not attempt at all.	
Description of Better Responses	Better response showed candidates' ability to apply the chain rule (provided in the formula sheet). In addition to this, the candidates also found the derivatives involved in the chain rule correctly.	
Image of Better Response	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Description of Weaker Responses	Weaker responses reflected the gap in understanding of the chain rule and its application. Many of the candidates applied quotient rule, which was not the appropriate or correct method for differentiation of such functions.	

Images of	Image (i)
weaker Responses	$y = 2x^2 - 1 + u = 1 - 2x$
	4 - 2(2)(2)(1) - (0)
	4 - 4 1
	Jen Je
	$u = \frac{1-2x}{x}$
	$\frac{\left u - \frac{x}{2x^2}\right }{\frac{4x^2}{2x^2}}$
	Image (ii)
	$27 = 2m^2 - 2$
	Ju 1-22
	X
	= 270 =7 270-27
	- A R
	-1 $(21 + 2)$
	areand = L(i)
Question Text	Question No. 2bii
Question Text	For $y = \sin \sqrt{2x}$, find $\frac{dy}{dx}$.
SLO No.	13.4.2
SLO Text	Find the derivative of trigonometric functions using direct method.
Max Marks	2
Cognitive Level	A
Checking	1 mark for writing $\cos\sqrt{2x}$ i.e., differentiating the external function.
HINTS	1 mark for finding derivative of the angle and writing in the form $\cos \sqrt{2x} \times \frac{1}{2} \times \frac{1}{\sqrt{2x}} \times 2$.
Overall	This part of 2b, i.e., 2bii tested candidates' ability to differentiate a trigonometric function.
Performance	Overall, only few of the candidates attempting this question scored full marks. However, there were candidates who attempted this question partially or did not attempt at all
Description of	Better responses showed the correct differentiation of the external function (sine) and
Better	further applied the derivative to the angle function. Thus, better responses showed the
Responses	correct differentiation of both these functions as per requirement.

Images of	Image (i)
Responses	$\frac{dy}{dt} = \frac{d}{(\sin\sqrt{2x})}$
	$\frac{\partial x}{\partial t} = \frac{\partial x}{\partial t}$
	$\frac{dy}{dx} = \cos \sqrt{2x} \frac{dx}{dx} \frac{dx}{dx}$
	$\frac{dy}{du} = \cos \sqrt{2n} \left(\frac{1}{2} \left(2\pi \right)^{1/2} \left(2 \right) \right)$
	$\frac{dy}{dn} = \cos \sqrt{2x} \left(\frac{2}{2\sqrt{2x}}\right)$
	$\frac{dy}{dx} = \frac{\partial}{\partial x} \cos \sqrt{\partial x} aus.$
	Image (ii)
	$H = \sin\sqrt{2x} \qquad \qquad dy = \cos\sqrt{2x} \cdot 1 \cdot 2$
	Difficient respect to x dr 2J2x
	$dy = d \sin \sqrt{2x}$ $dy = \cos \sqrt{2x}$
	dr dr dr
	$\frac{dy}{dx} = \frac{\cos \sqrt{2x} \cdot d \sqrt{2x}}{dx}$
	dx dx
	$\frac{dy}{z} = \frac{\cos \sqrt{2x} - 1}{2} \frac{(2x)^{1/2} \cdot d(2x)}{2}$
Description of	Weaker responses showed candidates' inability to differentiate trigonometric function
Weaker	correctly. Hence, they made mistakes in applying the trigonometric differentiation, did not
Responses	differentiate the angle or made both the mistakes. Also, some candidates put the power of the angle to the power of the trigonometric function or applied the product rule between the
	trigonometric sine function and its angle or could not differentiate the angle separately.
Images of weaker	Image (i)
Responses	$y = Sin(an)^{k_2}$
	$\frac{dy}{dx} = \frac{d}{dx} \left(\sin(ax)^{1/2} \right)$
	dy = 1 (2 sin & Cosn)
	du 12
	dy = Sinx cosn.
	đn 2

Image (ii) + Jan des Sin an Sin of Jau der Jan. cas Sin. RA A 2 sin. 221 SOS - - - -+ [0331

How to Approach SLO	Pedagogy Used for that	Assessment Strategies
	SLO	
 Understand the expectations of the command words Look at the cognitive level Identify the content that is required to answer that question (both in terms of understanding of concepts and any skills that may be required like analysing or evaluating) Go through the past paper questions on that particular concept Refer to the resource guide for extra resources 	 Story Board Cause and Effect Fish and Bone Concept Mapping Audio Visual resources Think, Pair and Share Questioning Technique (Socratic approach) Practical Demonstration 	 Past paper questions Discussion on E-Marking Notes AKU-EB Digital Learning Solution powered by Knowledge Platform https://akueb.knowledgeplatform.com/login

Any Additional Suggestion:

While teaching these concepts, teachers are advised to use the following strategies. These strategies collectively contribute to improving accuracy and confidence in differentiation outcomes.

Step-by-Step Breakdown: Break down the chain rule into its components. Explain how to identify the inner function, the outer function, and their respective derivatives. Guide students through each step of the process with clear explanations.

Interactive Activities: Design interactive activities or online tools i.e., Desmos and wolframalpha that allow students to experiment with different functions and observe how the chain rule impacts the result. This hands-on approach can enhance their intuition about the rule.

Use of Technology: Utilise graphing calculators, mathematical software, or online platforms that can automatically compute derivatives using the chain rule. This can help students focus on the concept without getting bogged down by tedious calculations.

Providing step-by-step examples that highlight the separation of the trigonometric function and its angle during differentiation can aid in understanding.

Emphasising the importance of differentiating the angle separately and then applying the derivative to the trigonometric function is crucial.

<i>a</i>	Question No. 2ci
Candidate	s were given the choice to attempt any TWO out of the three questions: 2a, 2b and 2c.
Question Text	Find the equation of tangent to the curve $f(x) = x^2 - 4x + 5$ at $(1, -1)$.
SLO No.	14.3.2
SLO Text	Find the equation of tangent and normal to the curve at a given point.
Cognitive	Α
Level	
Checking	1 mark for finding first derivative
Hints	1 mark for value of the first derivative at the given point
	1 mark for correct substitution in the point slope form
Overall	Relatively lesser number of candidates, as compared to previous two parts, attempted 2c.
Performance	This part of 2c, i.e., 2ci tested candidates' ability to apply derivative to find the slope of the
	tangent to a curve. Overall, a lesser number of the candidates attempting this question scored
	full marks. Most of the candidates solved this question partially correct.
Description of	Candidates with better responses found the derivative of the function and substituted the
Better	given value of x to find the slope of the tangent at the specified point. Moreover, those
Kesponses	
Bottor	Taking derivative of the hunchion
Besnonse	Au - 2 - 4
Response	ay = 2x - 1
	ux putting value of (1,-1)
	dy - 2(1)-4 -> dy> so slow in ->
	dx dx
	Using point slace barm
	$y^{-(-1)} = -2(x - 1)$
	$y_{+1} - 2x_{+2}$
	4+2, 1 - equation at taxat
Description of	Weaker responses showed candidates' conceptual gap in relating the slope of tangent to the
Weaker	derivative of a function. Moreover, candidates showed lack of understanding of the
Responses	substituting the value of x in the derivative to find the slope of the tangent. In addition, some
	candidates used the direct formula for finding the tangent to a circle.

Image of	Concern	
weaker Response	Toward to the curve for)- 22-42+5	
-	At the paints $= (1 - 1) \longrightarrow (x_1, y_1)$	
	Paris A is so line at the decast	
	Kequiveo is equation of the tangent	
	"Using tormula: xxc, + yg, +g(x+x,)++ (y+y)+c=0	
	Put points (re, g)	
	1x - 1y + g(x+1) + F(y-1) + c = 0	
	n-y+gn+g+fy-f+c=0 Anguer	
I	Question No. 2cii	
Question Text	Find the <i>x</i> -coordinate of the point on the curve $f(x) = 2x^2 - 4$ at which the tangent to $f(x)$	
	is parallel to the horizontal axis.	
SLO No.	14.3.4	
SLO Text	Find the point on a curve where the tangent is parallel to the given line.	
Max Marks	2	
Cognitive	A	
Level Checking	1 mark for finding first derivative	
Hints	1 mark for putting $4x = 0$ and evaluating x.	
Overall	This part of 2c, i.e. 2cii tested candidates' ability to apply the geometrical interpretation of	
Performance	marks. Most of the candidates solved this question partially correct.	
Description of	Better responses differentiated the given function and equated it to zero. Hence, evaluated	
Better	correctly for x. Thus, they obtained the point on which the tangent to the given curve was parallel to the x - axis	
Image of	parametro the x – axis.	
Better	As we know that slope of horizontal axis is zero.	
Response	the slope of topport to f(w) will also be zero	
	O Z II	
	y = 2n - 4	
	dy = 4n = 0 $O = 4n$	
	dn $n=0$	
	Ly coordinate in O	
	Le coor amore is of	
	1	
Description of Weaker	Candidates with weaker responses could not relate derivative of a function with the slope of the tangent. Moreover, they could not evaluate for x by equating the derivative of the	
Responses	given function to zero. Some candidates demonstrated some relationship of derivative with	

the tangent as they differentiated the function and equated to zero. However, due to incorrect differentiation, they could not evaluate the correct value of *x*. Image of $= 2n^{2}$ $0 = 2n^2 - 4$ weaker 4 = 22 Response $= n^2$ 2 52 = n N 20 ч 26 - f (n 2+ ю 2 \mathbf{O} 0+4 = A 12= 42 = n 9 2 4

How to Approach SLO	Pedagogy Used for that	Assessment Strategies	
	SLO		
 Understand the expectations of the command words Look at the cognitive level Identify the content that is required to answer that question (both in terms of understanding of concepts and any skills that may be required like analysing or evaluating) Go through the past paper questions on that particular concept Refer to the resource guide for extra resources 	 Story Board Cause and Effect Fish and Bone Concept Mapping Audio Visual resources Think, Pair and Share Questioning Technique (Socratic approach) Practical Demonstration 	 Past paper questions Discussion on E-Marking Notes AKU-EB Digital Learning Solution powered by Knowledge Platform. https://akueb.knowledgeplatform.com/login 	
Any Additional Suggestion:			
While teaching these concepts, teachers are advised to use the following strategies.			
Use visual aids like graphs and o	Use visual aids like graphs and diagrams to enhance understanding.		
Derive equations step by step us	Derive equations step by step using a general point on the curve and focus on slope relationships		
Explain the condition for the tangent's slope to match a given line's slope.			
Highlight the role of derivatives	in determining slopes and rate	es of change.	

Foster critical thinking through discussions of real-world applications and limitations

	Question No. 39i		
Candidates	were given the choice to attempt any TWO out of the three questions: 3a, 3b and 3c.		
Question Text	Evaluate the integral $\int \tan^2 x dx$.		
SLO No.	16.2.3		
SLO Text	Evaluate indefinite integrals.		
Max Marks	2		
Cognitive Level	Α		
Checking Hints	1 mark for correct trigonometric substitutions.		
0	1 mark for evaluating integral.		
Overall	I his part of 3a, i.e. 3al tested candidates integrated trigonometric function of higher power by reducing to single power using related identity. Overall, a lesser number of the		
rentormance	candidates attempting this question scored full marks. Most of the candidates solved this		
	question partially correct.		
Description of	Better responses showed correct substitution for the given function using identity		
Better	Furthermore, such responses demonstrated correct integration of the function obtained		
Responses	after using the identity.		
Image of Better	(tan'n dr		
Response	Junix ux		
	$= \int (sec^{-1} - 1) dx$		
	$= (lec^{2}x - (dx))$		
	- +anx - x + c		
Description of	Weaker responses could not distinguish between the trigonometric function and its angle		
Weaker	Most of them either integrated the trigonometric function and its angle separately one by		
Responses	one or applied trigonometric identity that was not appropriate or helpful for integrating		
•	the given function.		
Image of			
weaker	lian ² × dr		
Response			
	Jetan - K dK		
	2 Standa Sx dx		
	2.5 tanding A dia		
	2 Sec X K +L		
	OBJER KALLA		
	a set A ML +CAS		
	Question No. 3aii		
Question Text	Integrate the function $y'(t) = \frac{\pi}{t^2} \sin\left(\frac{\pi}{t}\right)$ by substitution.		
SLO No.	16.3.2		
SLO Text	Evaluate indefinite integrals using appropriate substitutions		
Max Marks	3		
Cognitive Level	A		

Checking Hints 1 mark for writing the function in integral form. 1 mark for making the substitution. 1 mark for evaluating integral. This part of 3a, i.e., 3aii tested candidates' ability to integrate a given function by **Overall** Performance substitution. Moreover, the function was given in derivative form, so it aimed at assessing the candidates' concept of integration as antiderivative. Overall, a lesser number of the candidates attempting this question scored full marks. Most of the candidates solved this question partially correct. **Description of** Better responses made the correct substitution for both the angle function and differential (dx). Moreover, the candidates integrated by the mentioned method correctly to obtain the **Better** correct integral. Responses **Image of Better** $y'(t) = -\frac{1}{4} \sin(-\frac{1}{2})$ let $x = \frac{\pi}{t}$ taking lift on bs Response $= -dx \sin x$ $= -\sin x dx$ $J(x) = J(\frac{1}{4})$ taking integral Jx = T d(+)-1 - [Sinzdu - (- cosu) + c $= \pi(-t^{-2})$ $dx = -\frac{\pi}{+}$ CUSATC COSA +C Weaker response could not apply substitution method of integration. Most of them either **Description of** Weaker used the formula for integration by parts or integrated both the functions separately. Responses **Images of** Image (i) weaker $\frac{U=\pi}{t^2} \quad V = Sin \pi}{t}$ **Responses** 10.vdw=v/vdw - (3 du /vdw Jdw . T SinTidt- (SinTidt- (SinTidt dt) dt A Cost dt F

Image (ii) mesin m . . $\frac{By Parts = U \int V dx \cdot \int (U' \int V dx') dx \quad U = m = U' = 1}{= \int ((-\cos m) \cdot \int (1) (-\cos m) dx \quad V = \sin m = \int V dx = -\cos m}$ - cosm (- cosm dx = - cosm - sinmtc - ewi Put the value of min evi =-cos n - sinn Ans E۴

How to Approach SLO	Pedagogy Used for that SLO	Assessment Strategies	
 Understand the expectations of the command words Look at the cognitive level Identify the content that is required to answer that question (both in terms of understanding of concepts and any skills that may be required like analysing or evaluating) Go through the past paper questions on that particular concept Refer to the resource guide for extra resources 	 Story Board Cause and Effect Fish and Bone Concept Mapping Audio Visual resources Think, Pair and Share Questioning Technique (Socratic approach) Practical Demonstration 	 Past paper questions Discussion on E-Marking Notes AKU-EB Digital Learning Solution powered by Knowledge Platform https://akueb.knowledgeplatform.com/login 	

Any Additional Suggestion:

While teaching these concepts, teachers are advised to use the following strategies.

Step-by-Step Identity Application: Offer a detailed breakdown of how to apply these identities to simplify higher power trigonometric expressions. Guide candidates through the process with clear, sequential steps. Algebraic and Graphical Representations: Illustrate concepts with both algebraic and graphical representations. Show how identities are applied algebraically and how they impact the graph.

Revisiting the Concept of Antiderivatives: Reinforce the concept of integration as finding antiderivatives. Highlight the connection between differentiation and integration.

Diverse Integration Scenarios: Encourage candidates to work through various integration scenarios using substitution. Present problems with different levels of complexity and function types.

Question No. 3b

Candi	dates were given the choice to attempt any TWO out of the three questions: 3a, 3b and 3c.		
Question Text	Evaluate the integral $\int (1+x)^2 \ln(1+x) dx$.		
SLO No.	16.4.3		
SLO Text	Evaluate integrals using integration by parts.		
Max Marks	5		
Cognitive	Α		
Level			
Checking	1 mark for correct selection of $f(x)$ and $g'(x)$.		
Hints	1 mark for finding $f'(x)$ and $g(x)$.		
	1 mark for correct substitution.		
	1 mark for performing the integration.		
	1 mark for simplification.		
Overall	In this question candidates demonstrated their ability to integrate a given function using		
Performance	integration by parts. Only few of the candidates attempting this question scored full marks		
	by showing each and every essential step. However, many of the candidates solved this		
	question partially correct.		
Description of	on of Better responses showed good grasp on the concept of integration by parts and applied this		
Better	method correctly to integrate the function. Such responses did not make any mistake in		
Responses	correct integration of parts.		

How to Approach SLOPedagogy Used for that SLO		Assessment Strategies	
 Understand the expectations of the command words Look at the cognitive level Identify the content that is required to answer that question (both in terms of understanding of concepts and any skills that may be required like analysing or evaluating) Go through the past paper questions on that particular concept Refer to the resource guide for extra resources 	 Story Board Cause and Effect Fish and Bone Concept Mapping Audio Visual resources Think, Pair and Share Questioning Technique (Socratic approach) Practical Demonstration 	 Past paper questions Discussion on E-Marking Notes AKU-EB Digital Learning Solution powered by Knowledge Platform https://akueb.knowledgeplatform.com/login 	

Any Additional Suggestion:

While teaching the concept, teachers are advised to use the following strategies.

Common Trigonometric Integrals: Address common integrals involving trigonometric functions using integration by parts. Offer strategies for simplifying trigonometric integrals.

Integration by Parts vs. Other Techniques: Discuss scenarios where integration by parts is particularly useful compared to other integration techniques. Contrast it with substitution and other methods to guide when to choose integration by parts.

Choice of Functions (u and dv): Emphasise the importance of strategically selecting the "u" and "dv" components to simplify the integration. Offer guidelines such as the "LIATE" rule to aid in making effective choices.

Practice with Different Function Types: Offer a diverse set of practice problems that encompass a variety of function types. This ensures that candidates are comfortable applying integration by parts to different scenarios.

Question No. 3ci			
Candie	Candidates were given the choice to attempt any TWO out of the three questions: 3a, 3b and 3c.		
Question Text	Calculate the area bounded by the function $y(t) = \cos\left(\frac{t}{2}\right)$ between $t = 0$ to $t = \frac{\pi}{2}$.		
SLO No.	16.6.5		
SLO Text	Calculate the area under the curve using definite integrals.		
Max Marks	2		

Cognitive	Α		
Level			
Checking	1 mark for writing the integral.		
Hints	1 mark for evaluating area by substituting the limits of integration.		
Overall	A considerable number of candidates attempted 3c. This question tested candidates' ability		
Performance	to apply the definite integrals for finding the area under the curve. Overall, good number of		
	solved this question partially correct		
Description of	Better responses demonstrated good understanding of the area under the curve as definite		
Better	integral. Therefore, they applied the definite integral and evaluated the value correctly.		
Responses			
Image of	N		
Better	4 cos t		
Response			
	0.)		
	$=$ sin $\frac{1}{2}$		
	1/2.		
	$= \frac{\sin \pi/2}{2} - \frac{\sin \theta}{2}$		
	1/2 1/2		
	According and		
	$ff = \gamma 2 m^{-1}$		
Description of	Most of the weaker responses demonstrated some knowledge of area under the curve as		
Description of Weaker	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In		
Description of Weaker Responses	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In addition, some of the candidates either applied limits without integration of the given		
Description of Weaker Responses	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In addition, some of the candidates either applied limits without integration of the given function or made mistakes in applying limits of integration.		
Description of Weaker Responses Images of	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In addition, some of the candidates either applied limits without integration of the given function or made mistakes in applying limits of integration. Image(i)		
Description of Weaker Responses Images of weaker	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In addition, some of the candidates either applied limits without integration of the given function or made mistakes in applying limits of integration. Image(i)		
Description of Weaker Responses Images of weaker Responses	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In addition, some of the candidates either applied limits without integration of the given function or made mistakes in applying limits of integration. Image(i)		
Description of Weaker Responses	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In addition, some of the candidates either applied limits without integration of the given function or made mistakes in applying limits of integration. Image(i) $\int_{a}^{a} \cos\left(\frac{t}{2}\right) dt$		
Description of Weaker Responses	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In addition, some of the candidates either applied limits without integration of the given function or made mistakes in applying limits of integration. Image(i) $\int_{a}^{a} \cos\left(\frac{t}{2}\right) dt$		
Description of Weaker Responses	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In addition, some of the candidates either applied limits without integration of the given function or made mistakes in applying limits of integration. Image(i)		
Description of Weaker Responses	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In addition, some of the candidates either applied limits without integration of the given function or made mistakes in applying limits of integration. Image(i) $\frac{\int_{a}^{T} \cos(\frac{t}{2}) dt}{\int_{a}^{T} - \sin(\frac{t}{2}) + c \int_{a}^{\frac{T}{2}} dt}$		
Description of Weaker Responses	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In addition, some of the candidates either applied limits without integration of the given function or made mistakes in applying limits of integration. Image(i) $\frac{3}{cos}\left(\frac{t}{2}\right) dt$ $= -\sin\left(\frac{t}{2}\right) + c \int \frac{4}{2}$		
Description of Weaker Responses	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In addition, some of the candidates either applied limits without integration of the given function or made mistakes in applying limits of integration. Image(i) $\frac{f_{cos}(f_{cos}) dt}{f_{cos}(f_{cos}) + c \int_{f_{cos}}^{f_{cos}} dt}$		
Description of Weaker Responses	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In addition, some of the candidates either applied limits without integration of the given function or made mistakes in applying limits of integration. Image(i) $ \frac{f^{2} \cos(\frac{f}{2}) dt}{\int \cos(\frac{f}{2}) + c \int \frac{f}{2}}{\int \cos(\frac{f}{2}) + c \int \frac{f}{2}}{\int \cos(\frac{f}{2}) - c \int \frac{f}{2}}{\int \cos(\frac{f}{2}) dt} $		
Description of Weaker Responses	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In addition, some of the candidates either applied limits without integration of the given function or made mistakes in applying limits of integration. Image(i) $\frac{f^{2} \cos(\frac{t}{2}) dt}{f^{2} \cos(\frac{t}{2}) + c \int_{0}^{\frac{1}{2}} \frac{1}{c} 1$		
Description of Weaker Responses Images of weaker Responses	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In addition, some of the candidates either applied limits without integration of the given function or made mistakes in applying limits of integration. Image(i) $ \frac{f(z) + c(z) + c(z))}{c(z) + c(z)} = -sin(z) + c(z) + c(z$		
Description of Weaker Responses Images of weaker Responses	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In addition, some of the candidates either applied limits without integration of the given function or made mistakes in applying limits of integration. Image(i) $ \frac{1}{2} \cos\left(\frac{1}{2}\right) + c + \frac{1}{2} = -\sin\left(\frac{1}{2}\right) - c \sin\left(\frac{1}{2}\right) + c + \frac{1}{2} = -\sin\left(\frac{1}{2}\right) - c \sin\left(\frac{1}{2}\right) + c + \frac{1}{2} = -\sin\left(\frac{1}{2}\right) - c \sin\left(\frac{1}{2}\right) + \frac{1}{2} = -\sin\left(\frac{1}{2}\right) - c \sin\left(\frac{1}{2}\right) + \frac{1}{2} = -\sin\left(\frac{1}{2}\right) + \frac{1}{2} = -\sin\left(\frac{1}{2}$		
Description of Weaker Responses Images of weaker Responses	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In addition, some of the candidates either applied limits without integration of the given function or made mistakes in applying limits of integration. Image(i) $ \frac{\int_{a}^{a} \cos(\frac{\pi}{2}) dt}{\int_{a}^{a} \cos(\frac{\pi}{2}) dt} = -\sin(\frac{\pi}{2}) + c \int_{a}^{\frac{\pi}{2}} \frac{1}{c} \sin(\frac{\pi}{2}) - (-\sin(\frac{\pi}{2})) \int_{a}^{a} \frac{\pi}{2} - \sin(\frac{\pi}{2}) \int_{a}^{a} \frac{\pi}{2} - \sin(\frac{\pi}{2}) \int_{a}^{a} \frac{\pi}{2} + \frac{1}{c} \sin(\frac{\pi}{2}) \int_{a}^$		
Description of Weaker Responses Images of weaker Responses	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In addition, some of the candidates either applied limits without integration of the given function or made mistakes in applying limits of integration. Image(i) $ \frac{1}{2}\cos\left(\frac{1}{2}\right) + c + \frac{1}{2} = -\sin\left(\frac{1}{2}\right) - \cos\left(\frac{1}{2}\right) + c + \frac{1}{2} = -\sin\left(\frac{1}{2}\right) - \cos\left(\frac{1}{2}\right) + \frac{1}{2} = -\sin\left(\frac{1}{2}\right) - \frac{1}{2} = -\sin\left(\frac{1}{2}\right) - \frac{1}{2} = -\sin\left(\frac{1}{2}\right) - \frac{1}{2} = -\sin\left(\frac{1}{2}\right) = -\frac{1}{2} = -\frac{1}{2} $		
Description of Weaker Responses	Most of the weaker responses demonstrated some knowledge of area under the curve as definite integral, however, such responses could not evaluate the integral correctly. In addition, some of the candidates either applied limits without integration of the given function or made mistakes in applying limits of integration. Image(i) $ \frac{4}{1}\cos\left(\frac{1}{2}\right) + c + \frac{1}{2} = -\sin\left(\frac{1}{2}\right) + c + \frac{1}{2} = -\sin\left(\frac{1}{2}\right) - (-\sin\left(\frac{1}{2}\right)) = -\sin\left(\frac{1}{2}\right) = -\sin\left(\frac{1}{2}\right) = -\sin\left(\frac{1}{2}\right) = -\frac{1}{\sqrt{2}} $		

	Image (ii) $\frac{y(1) = \cos\left(\frac{1}{2}\right) t = 0 - t = \frac{\pi}{2}$		
	$\frac{y(1) = \cos(0)}{2} \frac{y(1) = \cos \frac{\pi}{2} \cdot 90}{2}$ $\frac{1}{2} \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{$		
	Question No. 3cii		
Question Text	Show that the general solution of the differential equation $(x^2 - 1)\frac{dy}{dx} + x(y+1) = 0$ is $\ln(y+1) + \frac{1}{2}\ln(x^2 - 1) = C$.		
SLO No.	16.7.2		
SLO Text	Solve differential equations of first order and first degree by separating the variables.		
Max Marks	3		
Cognitive Level	Α		
Checking Hints	1 mark for separating variables 2 marks for applying integral (1 for each on LHS and RHS)		
	nce A considerable number of candidates attempted 3c. This required to solve a given differential equation. Overall, a good number of the candidates attempting this question scored full marks. However, some of the candidates solved this question partially correct.		
Overall Performance	A considerable number of candidates attempted 3c. This required to solve a given differential equation. Overall, a good number of the candidates attempting this question scored full marks. However, some of the candidates solved this question partially correct.		

Image of Better Response	$\frac{(\chi^2-1)(dy}{dx} + \chi(y+1) = 0 \qquad \text{according to } \int \frac{f'(x)}{f(x)} dx = \ln(f(x))$
	$(\chi^2-2)\frac{dy}{dt} = -\chi(y+1)$ $\ln(y+2)^2 = -\frac{1}{2}\int \frac{d\chi}{\chi^2-1} d\chi$
	$\frac{1}{1} \frac{dy}{dy} = -\pi \qquad (\ln(y+1)+g = -\frac{1}{2} \ln(x-1)+g$
	$\frac{9+1}{1}$ an $\frac{n^{2}-2}{1}$ $\frac{1}{1}$
	$\frac{1}{y+2} dy = \frac{-1}{x^2-2} dx \qquad (\ln(y+1) + \chi \ln(x^2-1) = C)$
	apply intergrat on b.s
	(Tytz) = J R-1 dr (C=G-Cz) proved
Description of	Weaker responses demonstrated insufficient understating of the differential equations and
Weaker Responses	their solution. Most of the candidates with weaker responses either could not separate the variables properly before integrating or they were not familiar with integration of the function.
Images of weaker	Image (i)
Responses	$\frac{dy}{dy} = -\chi(y+1)$
	$\frac{dx}{(x^2-1)} \frac{dy}{dy} \frac{dy}{(x^2-1)} \frac{dy}{(x^$
	$\frac{(k-i)(-j)}{(k-i)^2} = \frac{(-k)(j+i)(k-i)}{(k-i)^2}$
	$(x^{2}-1)(-1)^{4} - (-x(y+1))(2x)$
	$(y^2 - 1)^{\chi}$
	- dy +x - (y -1) - 2x
	(x-1)

Image (ii) dy =0 n (7+1 X , (+1 Side bot

	How to Approach SLOPedagogy Used for that		Assessment Strategies	
			SLO	
•	Understand the	•	Story Board	• Past paper questions
	expectations of the	•	Cause and Effect	 Discussion on E-Marking Notes
	command words	•	Fish and Bone	AKU-EB Digital Learning Solution
•	Look at the cognitive level	•	Concept Mapping	powered by Knowledge Platform
•	Identify the content that is	•	Audio Visual	https://akueb.knowledgeplatform.com/login
	required to answer that		resources	
	question (both in terms of	•	Think, Pair and	(C) 470 (C)
	understanding of concepts		Share	E 235 E
	and any skills that may be	•	Question Technique	62-51 Gx
	required like analysing or		(Socratic approach)	1963.6
	evaluating)	•	Practical	<u> </u>
•	Go through the past paper		Demonstration	国際に設め
	questions on that			
	particular concept			
•	Refer to the resource			
	guide for extra resources			

Any Additional Suggestion:

Teacher may use these teaching strategies, support students in mastering both differential equations and the evaluation of definite integrals for area calculations, enabling them to excel in these fundamental calculus concepts.

Visual Aids: Use visual aids, diagrams, and graphs to visually represent concepts and solutions, aiding in comprehension.

Error Analysis: Address common mistakes and misconceptions that students might encounter in both topics and provide guidance on how to avoid them.

Challenge: Assign progressively more challenging problems that require critical thinking and creative problem-solving skills, reinforcing the application of concepts.

	Question No. 4	
Question Text	In the given figure, the line passes through two given points $M(-3, 0)$ and $N(0, 4)$.	
	Using the given figure, i. find the slope of the given line. ii. show that equation of the line is $4x - 3y + 12 = 0$.	
SLO No.	17.2.3, 17.4.3	
SLO Text	Find the slope of a line passing through two points. Convert the general form of the equation of a straight line into the forms mentioned in SLO 17.4.2.	
Max Marks	4	
Cognitive Level	Α	
Checking Hints	 i. 1 mark for writing the correct values in the slope formula. 1 mark for evaluating slope correctly. ii. 1 mark for substituting the given values in the two-point form 1 mark for simplification. 	
Overall Performance	This question had two parts. In the first part, candidates calculated the slope of the line with the help of two given points on the line. In the second part, candidates found the equation of the line as stated in the question. Overall, majority of the candidates attempted this question correctly and completely scoring full marks. However, some of the candidates solved this question partially correct.	
Description of Better Responses	Better responses used the formula for slope of a line correctly and evaluated slope without any substitution or calculation error. In the second part, candidates giving better responses found the equation of the line through multiple methods, i.e., point slope form, two-point form and determinant form. Some better responses are shown as under. Most of the candidates applied the method used in the example.	

-			
Image of	M(-3,0); N(0,4)		
Better	m= u= - 4 - 0 - 4		
Response	$\frac{1}{32-31}$ 0-(-3) 3		
	Slope 2 m 2 4 Ans		
	· <u> </u>		
	ii. show that equation of the line is $4x - 3y + 12 = 0$. $y - y_1 = y - y_1 (x - x_1)$ M(-3, 0); N(0, 4)		
	(y - 0) = y - 0(x + 3)		
	O+3		
	3(4) = 4(2+3)		
	34 = 4x+12 -> 4x-34+12=0		
Description of Weaker Responses	in the first part, candidates applied incorrect formula for finding the slope, as shown in the given example. In addition, there were few responses which reflected that candidates did not have the concept of slope altogether although the formula was given in the formula sheet. It is advisable to incorporate formula sheets in the internal examinations in school, so that candidates would practice the effective use during examinations. In the second part, candidates were unable to understand the requirement of the question, hence calculated some irrelevant value.		
Images of	Image (i)		
weaker	· · · · · · · · · · · · · · · · · · ·		
Kesponses			
	$\frac{72-71}{14-14} = \frac{72}{3}$		
	(y-o) (0-(-3) Slope of the given line is 4 (0-3)		
	(62) H		
	3		
	ii.		
	$l = 10 \mu + b \nu + c + 1 + 4 \mu + 3 \mu + 12$		
	$\sqrt{a^2+b^2}$ $\sqrt{16+9}$		
	· WI-3) + B(a) · · · · · · · · · · · · · · · · · · ·		
	<u></u>		
	5		
	<u> </u>		

Image (ii) i. slope of line \overline{MN} is 45° . as point N is on axis n = 0, y = 4and point M is on axis n = -3, yii. $\frac{4n - 3y + 12}{(4y)(0y) - (3n)(0y) + 12 = 0}$ $\frac{(4y)(0y) - (3n)(0y) + 12 = 0}{(4y)(0y) - (3n)(0n) + 12 = 0}$ _____

How to Approach SLO	Pedagogy Used for that SLO	Assessment Strategies
 Understand the expectations of the command words Look at the cognitive level Identify the content that is required to answer that question (both in terms of understanding of concepts and any skills that may be required like analysing or evaluating) Go through the past paper questions on that particular concept Refer to the resource guide for extra resources 	 Story Board Cause and Effect Fish and Bone Concept Mapping Audio Visual resources Think, Pair and Share Questioning Technique (Socratic approach) Practical Demonstration 	 Past paper questions Discussion on E-Marking Notes AKU-EB Digital Learning Solution powered by Knowledge Platform https://akueb.knowledgeplatform.com/login

Any Additional Suggestion:

Following are some interactive teaching strategies to help students understand how to find the slope of a line through two points:

Real-world Examples: Use real-world scenarios where students have to find the slope. For instance, discuss scenarios like calculating the slope of a hill or a ski slope, emphasizing that slope measures steepness.

Physical Manipulatives: Provide students with physical objects like wooden blocks or toy cars and ask them to create inclined planes. They can then measure the rise and run to calculate the slope.

Interactive Whiteboard: Use an interactive whiteboard to draw lines through points, and allow students to manipulate the points and observe how the slope changes in real-time

Visual Representations: Use visual aids like diagrams and graphs to illustrate how the different forms of the equation relate to the geometry of the line.

Step-by-Step Examples: Provide step-by-step examples and ask students to follow along. Encourage them to work through practice problems to reinforce the concepts.

Discussion and Peer Teaching: Foster class discussions where students explain their thought processes when converting equations. Encourage peer teaching, where students explain the conversions to their classmates.

Question No. 5			
Question Text	Using the given graph,		
	• draw the line $2x - y = 0$.		
	• find the maximum value of the function $f(x, y) = 2x + y$ subject to the following		
	constraints.		
	x + y = 3		
	$2x - y \le 0$		
	$x + y \le 3 \tag{0, 3}$		
	$x \ge 0, y \ge 0$		
SLO No.	18.4.3		
SLO Text	Solve simple linear programing problems.		
Max Marks	4		
Cognitive Level	Α		

How to Approach SLO	Pedagogy Used for that	Assessment Strategies
	SLO	
 How to Approach SLO Understand the expectations of the command words Look at the cognitive level Identify the content that is required to answer that question (both in terms of understanding of concepts and any skills that may be required like analysing or evaluating) Go through the past paper questions on that user that any series of the part of the part	Pedagogy Used for that SLO • Story Board • Cause and Effect • Fish and Bone • Concept Mapping • Audio Visual resources • Think, Pair and Share • Questioning Technique (Socratic approach) • Practical Demonstration	Assessment Strategies • Past paper questions • Discussion on E-Marking Notes • AKU-EB Digital Learning Solution powered by Knowledge Platform https://akueb.knowledgeplatform.com/login
 Refer to the resource guide for extra resources 		

Any Additional Suggestion:

While teaching the concept, teachers are advised to use the following strategies.

Incorporate real-life examples: Use case studies and real-world scenarios to demonstrate how linear programming is applied in various industries and problem-solving situations.

Engage students in problem-solving exercises that involve linear programming. These exercises will help students apply their knowledge and develop critical thinking skills

Provide detailed explanations: Describe the method in detail and provide step-by-step instructions for solving linear programming problems. This will help learners understand the concepts and techniques involved

Use visual aids: Utilise graphs, charts, and diagrams to visually represent linear programming problems. Visual aids can enhance understanding and make complex concepts more accessible to learners.

Practice projects: Assign practical projects that require students to apply linear programming techniques to solve real-world problems. This will help learners gain hands-on experience and reinforce their understanding

Question No. 6		
Question	The equation of a circle is given by $3(x-3)^2 + 3y^2 = 27$.	
Text	For the given circle,	
	y y	
	i. find the radius.	
	ii. sketch the circle.	
	iii. write the equation of the tangent to the circle at	
	(3,3).	
SLO No.	19.2.4/19.2.5/19.3.3	
SLO Text	Find the centre and radius by using the general and standard form of equation of a circle.	
	Sketch a circle when its elements are given.	
May Marka	Find the equation of a tangent to a circle in the slope-intercept form.	
Max Marks	4	
Level		
Checking	i. 1 mark for calculating the radius	
Hints	ii. 1 mark for drawing the graph	
	iii. 1 mark for finding the slope of the tangent line at (3, 3)	
	1 mark for the equation of the tangent	
Overall	This question was related to finding the centre and radius by using the general and standard	
Performance	form of equation of a circle and sketching it when elements are given. Moreover, it involves	
	finding the tangent of the circle. Overall, candidates struggled in solving this question. Most	
Description	of the candidates could either solve this question partially of could not solve at all.	
of Better	standard form. Hence, such responses compared the given equation with standard equation	
Responses	of a circle and found radius. With the help of radius and centre depicted from the standard	
nesponses	equation of the circle, candidates sketched the circle. Moreover, they either used the direct	
	formula or used differentiation approach to find the equation of the tangent to the circle.	
	Refer to the given example for one of the better response.	

	How to Approach SLO	Pedagogy Used for that	Assessment Strategies
		SLO	
•	Understand the	Story Board	• Past paper questions
	expectations of the	• Cause and Effect	 Discussion on E-Marking Notes
	command words	 Fish and Bone 	 AKU-EB Digital Learning Solution
•	Look at the cognitive level	 Concept Mapping 	powered by Knowledge Platform
•	Identify the content that is	 Audio Visual 	https://akueb.knowledgeplatform.com/login
	required to answer that	resources	
	question (both in terms of	• Think, Pair and	e sta
	understanding of concepts	Share	li de la companya de
	and any skills that may be	 Questioning 	VS2274.77
	required like analysing or	Technique (Socratic	CE42.181412
	evaluating)	approach)	[[김 씨 씨 씨 씨
•	Go through the past paper	 Practical 	ELUNGHER .
	questions on that	Demonstration	
	particular concept		
•	Refer to the resource		
	guide for extra resources		

Any Additional Suggestion:

While teaching the concept, teachers are advised to use the following strategies.

Real-Life Examples: Provide real-life scenarios where the conversion of equations into standard form and extraction of essential elements are applicable. For example, demonstrate how architects use these concepts to design circular structures.

Activity-Based Learning: Engage students in hands-on activities that involve converting equations into standard form and identifying essential elements. For instance, provide worksheets or interactive exercises where students can practice identifying the centre and radius of circles.

Visual Aids: Utilise visual aids such as diagrams, graphs, and illustrations to illustrate the conversion process and identify essential elements. Visual representations can help students visualise the concepts and make connections between different elements.

With regular opportunities to practice and reinforce their understanding, learners may develop the necessary skills and confidence. Assigning practice projects that simulate real-world scenarios can greatly enhance their learning experience.

Question No. 7a		
Candidates were given the choice to attempt any TWO out of the three questions: 7a, 7b, and 7c.		
Question Text	t Find the equations of tangents to the parabola $y^2 = 8x$, at the points whose x-coordinate is	
	2.	
SLO No.	20.3.2	
SLO Text	Find the equation of a tangent and a normal to a parabola.	
	i. at a point, ii. which is parallel to a line, iii. which is perpendicular to a line.	
Max Marks	4	
Cognitive	Α	
Level		
Checking	1 mark for finding points $(2, 4)$ and $(2, -4)$	
Hints	1 mark for finding the slopes of tangents	
	1 mark for writing the point slope form of the equation	
	1 mark for finding the equations of the tangents	
Overall	This question tested the essential learning outcomes related to parabola. Candidates were	
Performance	required to find the points on the parabola using the given values. Moreover, the tangent at	
	those points were also to be found. Overall, though lesser number of candidates attempted	
	marks. Most of the candidates solved this question partially correct	
Description of	Better responses showed correct calculation of the required points: followed by calculation	
Retter	of slopes of the tangents at the given points and found the equation of the tangents at those	
Responses	points.	
-		

Image of	when first have be find a coordinates of		
Better Response	tongents		
nesponse	$u^2 = 8(2)$ $u^2 = 16$ $y = \pm 4$		
	We have tangents at point (2,4) and (2,-4)		
	Now we find slope: - d y2 = d 8 mm dr. dr		
	$= 2y \cdot dy = 8 \left[\frac{dy}{du} = 4 \right]$		
	At point $(2,4)$ At point $(2,-4)$ $m=4$ m=4		
	$y-y_1 = M(n-n_1) = \frac{4}{m-1} + 4 = -1(n-2) = \frac{m-1}{m-1}$		
	y-4=1(n-2) $y+4=-n+2$		
	-y-4=n-2 $y+n+2=0$		
	y - k - 2 = 0		
	(1-1-2-0) (gtht2)		
	Second Second		
	First boilts		
Description of	Weaker responses reflected that candidates could not easily determine what was to be		
Weaker	evaluated. However, some of the candidates evaluated a single value of the y coordinate		
Responses	corresponding to x. In addition, most of such responses could not demonstrate how to find the equation of the tangents at that/ those points		
Image of	the equation of the tangents at that/ those points.		
weaker	Sol: y= 4an > y= 4(2)n		
Response	Put n = 2		
	y' = 4(2)(2)		
	$\frac{3}{1} = 16$		
	$-49^{7} = 16$		
	No. Ptu 25 4-4		
	1000, Yut x = 2 2 3 = 4 -> $(4 - K)^2 - 4a(x - b)$		
	$\Rightarrow (4 - K)^{2} = 4(x)(x^{2} - w)$		
	$\Rightarrow 16 - 16 = 8(2 - h)$		
	→ 16-K = 16-h		
	$\rightarrow +K = +h$		
	$\rightarrow K = h$		

How to Approach SLO	Pedagogy Used for that	Assessment Strategies
 How to Approach SLO Understand the expectations of the command words Look at the cognitive level Identify the content that is required to answer that question (both in terms of understanding of concepts and any skills that may be required like analysing or evaluating) Go through the past paper questions on that particular concept Refer to the resource 	Pedagogy Used for that SLO• Story Board• Cause and Effect• Fish and Bone• Concept Mapping• Audio Visual resources• Think, Pair and Share• Questioning Technique (Socratic approach)• Practical Demonstration	Assessment Strategies Past paper questions Discussion on E-Marking Notes AKU-EB Digital Learning Solution powered by Knowledge Platform https://akueb.knowledgeplatform.com/login
guide for extra resources		

Any Additional Suggestion:

Teachers are suggested to use a combination of visual aids, hands-on activities, and technology to make the learning of conic sections engaging and interactive:

Interactive Graphing Software: Utilise graphing software like GeoGebra or Desmos to plot parabolas and their tangent lines. These tools allow students to manipulate the parameters and observe how the tangent changes as they move along the curve.

Real-world Examples: Show real-world examples of parabolic shapes, such as the path of a thrown object or the reflector in a flashlight. Discuss how tangents are relevant in these contexts.

Tangent Line Demonstrations: Physically demonstrate the concept of a tangent line by drawing a curved path on the ground and showing how a straight object (like a stick) touches the curve at one point without crossing it.

Exploration of Slope: Help students understand that the slope of the tangent line at any point on the parabola is equal to the derivative of the parabola's equation at that point. Walk them through the process of finding the slope of the tangent at various points.

Interactive Worksheets: Create worksheets or online activities where students can practice finding tangent lines to parabolas at specific points. Provide instant feedback to reinforce their understanding.

Visual Demonstrations: Use physical props like a flashlight and a concave mirror to show how light rays reflect and create a parabolic shape. Discuss how tangent lines are related to the angle of reflection.

Question No. 7b			
Candidate	Candidates were given the choice to attempt any TWO out of the three questions: 7a, 7b, and 7c.		
Question Text	The earth is moving around the sun in an ELLIPTICAL path. During this motion, the		
	shortest distance between their centers is 91 million miles while the farthest is 94.5 million		
	miles.		
	If origin is considered at the centre of the sur	n, then equation of this ellipse will have the	
	$x^2 + y^2 = 1$		
	form $\frac{1}{a^2} + \frac{1}{b^2} = 1$. Find the		
	i. values of <i>a</i> and <i>b</i> .		
	ii. eccentricity.	Earth	
	iv. distance between directrices of the ear	th orbit.	
SLO No.	21.2.5		
SLO Text	Solve word problems related to ellipse.		
Max Marks	4		
Cognitive	A		
Level			
Checking	i. 1 Mark for correct identification of <i>a</i> and <i>b</i>		
Hints	11. I Mark for eccentricity 1		
	1 Mark for calculating the distance between directrices		
Overall	This question was related to application of ellipse. Candidates were required to find the		
Performance	equation for the ellipse using the given information. Moreover, candidates were expected to		
I error munee	calculate the listed elements of the ellipse. Overall, a good number of candidates attempted		
	this question, many of the candidates attem	pting this question scored full marks. The	
	remaining candidates solved this question partially correct.		
Description of	Better responses used the given information to form the equation of the ellipse in standard		
Better	form. Moreover, they evaluated the required	elements of the ellipse using the equation.	
Responses	Hence, candidates could form the equation fro	m the given situation and they were also able	
	to relate the elements with the context in which this problem was posed.		
Images of	Image (i)		
Better	i. values of a and b.	iii. distance between directrices of the earth orbit.	
Responses	a = 94.5 b = 91	directrix => K= ± a = 94.5 = 363.46	
		e and	
	a = 8730.25 b = 8281	distance blu directrices	
		$\Rightarrow 2k = 2(363.46) = 726.92$	
	ii. eccentricity.		
	$e=c$: $c=a^{-}b^{+}$		
	a \$930.25 - 9291		
	-= 25.48		
	94.5 Jc = 1649.25		
	- 0.26 C = 25.48		

	Image (ii)		
	a=94.5 b=91		
	eccentricity.		
	$a^2 - b^2 = [au 5^2 - ai^2]$		
	V Q2 94.5		
		- `	
	ecentricity = 53		
	distance between directrices of the earth orbit.		
	e e		
	2(94.5) = 700.95		
	153/20		
Description of Weaker Responses	Although candidates with weaker responses were al depicts an ellipse, however, they could not pick the correct equation. Hence, they could not find the rec of the candidates applied incorrect formulae to find	ble to recognise that the given situation e required information to construct the juired elements. On the contrary, some the required elements	
Images of	of the candidates applied incorrect formulae to find the required elements. Image (i)		
weaker Responses	$u^2 - u^2$		
-	191 94.5		
	ii. eccentricity.		
	$e = \frac{1}{2}a$		
	7.42	1 - (3)	
	$C = \frac{1}{2}$	$= c = \frac{37}{13}$	
	- 91		
	iii. distance between directrices of the earth	orbit.	
	24		
	~ 1019		
	0 (91)		
	101		

	Image (ii)	
	i. values of a and b. 2^{2} 1^{2} 1^{2} $a = 1$ a = 1 a = 1 b = 1	-91-5
	ii. eccentricity. $e = \frac{e}{a}$	using.
	e= -649.25	(2 - 92 - 52
	91	22 = (A)2- (94.5)2
	e = -7.134	c2 = -649,25
	iii distance between directrices of the earth orbit	
	d = an+by+c	1 Dinectila = CA
	592+62	= +649.2519
	·	1= 59081:75
	[d] = 1 ain + 94 56	1+-649.25 -
	1 (91)2+ (99.5)2
	· · · · · · · · · · · · · · · · · · ·	

How to Approach SLO	Pedagogy Used for that	Assessment Strategies
 Understand the expectations of the command words Look at the cognitive level Identify the content that is required to answer that question (both in terms of understanding of concepts and any skills that may be required like analysing or evaluating) Go through the past paper questions on that particular concept Refer to the resource guide for extra resources 	 Story Board Cause and Effect Fish and Bone Concept Mapping Audio Visual resources Think, Pair and Share Questioning Technique (Socratic approach) Practical Demonstration 	 Past paper questions Discussion on E-Marking Notes AKU-EB Digital Learning Solution powered by Knowledge Platform https://akueb.knowledgeplatform.com/login

Any Additional Suggestion:

Teachers are suggested to use a combination of visual aids, hands-on activities, and technology to make the learning of conic sections engaging and interactive:

String and Pins: Use string, two pins, and a pencil to demonstrate how an ellipse can be drawn. Students can take turns creating ellipses and discussing their properties.

Geometric Art: Have students create geometric art by drawing ellipses of various sizes and shapes. This can help reinforce the idea of the major and minor axes.

Astronomical Applications: Discuss how ellipses are used to describe the orbits of planets around the sun. You can use simulations or animations to illustrate these orbits.

Digital Tools: Utilise graphing software like GeoGebra or Desmos to show how changing parameters in the equation of an ellipse affects its shape and orientation.

Outdoor Activities: Take the class outdoors to a large open area and have students walk along ellipses drawn on the ground. This can provide a physical, hands-on experience

Question No. 7c			
Candidate	Candidates were given the choice to attempt any TWO out of the three questions: 7a, 7b, and 7c.		
Question Text	estion Text Find the co-ordinates of foci, equations of directrices and lengths of the latera of the		
	hyperbola $x^2 - y^2 = 9$ of the earth orbit.		
SLO No.	22.3.2		
SLO Text	Find the equation of a tangent and a normal to a hyperbola.		
Max Marks	4		
Cognitive	re A		
Level			
Checking	1 mark for finding eccentricity e		
Hints	1 mark for finding coordinates of focus		
1 mark for finding equation of directrices			
1 mark for finding length of latera recta			
Overall This question was related to hyperbola. Candidates were required to use the given equation			
Performance to extract the elements. Moreover, they were expected to evaluate other elements usi			
formulae. Overall, a good number of candidates attempted this question and many of t			
	candidates attempting this question scored full marks. The remaining candidates solved this		
	question partially correct.		
Description of	Candidates with better responses used the given equation correctly to extract the elements.		
Better	Moreover, they evaluated other elements using formulae. Hence, they correctly evaluated		
Responses	all the listed elements.		

Image of =1. **Better** 3/ length of latera sectra= Response a=3 2(3) b=3 $C^2 = a^2 + b^2$. ength of latera Pertes 6. C2=9+9 C²=√€ 18 C= 18 Fou (±c,0). (±118,0). equation of directorices = ± c e². "e= c/a. + 118 e= 118/2 ລ 312 + e - 12 **Description of** Candidates with weaker responses mostly were able to reduce the equation into standard Weaker form, however, they could not extract the elements correctly. In addition, they could not Responses apply the relevant formulae to calculate the required elements correctly. **Images of** Image (i) weaker N **Responses** $a^{2}+b^{2}=c^{2}$ 18 coordinates oel = 2 (= 2 18 = +8.5 derectrices 2 260/a 2612/9 = 2 Ja atus ractum = = +9/+1

How to Approach SLO	Pedagogy Used for that SLO	Assessment Strategies
 Understand the expectations of the command words Look at the cognitive level Identify the content that is required to answer that question (both in terms of understanding of concepts and any skills that may be required like analysing or evaluating) Go through the past paper questions on that particular concept Refer to the resource guide for extra resources 	 Story Board Cause and Effect Fish and Bone Concept Mapping Audio Visual resources Think, Pair and Share Questioning Technique (Socratic approach) Practical Demonstration 	 Past paper questions Discussion on E-Marking Notes AKU-EB Digital Learning Solution powered by Knowledge Platform https://akueb.knowledgeplatform.com/login

Any Additional Suggestion:

Teachers are suggested to use a combination of visual aids, hands-on activities, and technology to make the learning of conic sections engaging and interactive.

Cutting Cones: Demonstrate hyperbolas by cutting a cone at different angles. This visual representation can help students understand the shape of a hyperbola.

Geogebra or Desmos: Use dynamic graphing software to allow students to manipulate parameters in the hyperbola equation and observe how it affects the graph.

Real-world Examples: Show examples of hyperbolic shapes in real life, such as satellite dish reflectors or certain types of mirrors.

Foci and Directrix: Conduct activities where students locate the foci and directrices of hyperbolas. For example, let them find points where light reflects off mirrors to converge at a single point.

Hyperbola Construction: Let students construct a hyperbola using a straightedge and compass, similar to the string and pins method for ellipses.

Conics in Navigation: Discuss how hyperbolas were historically used for navigation (hyperbolic navigation). Explore the concept of hyperbolic positioning systems.

Question No. 8			
Question Text	By transforming the equation $x^2 + 5y^2 - 2x + 10y + 5 = 0$ referred to a new origin and axes		
	remaining parallel to the original axes, the first degree terms are removed. Find the coordinates of the new origin and the transformed equation.		
SLO No.	23.1.3		
SLO Text	Find the transformed equation by using translation or rotation of axes.		
Max Marks	4		
Cognitive	Α		
Level			
Checking	1 mark for substituting correct equations of transformation		
Hints	1 mark for simplification to get an equation in terms of X and Y		
1 mark for finding h and k by applying the given condition			
	1 mark for final equation		
Overall	rall This question was related to transformation of a given equation by using translation of axe		
Performance Candidates were expected to use the given equations and transform the given equ			
	Overall, candidates struggled in solving this question. Most of the candidates could either		
	solve this question partially or could not solve it at all.		
Description of	Better responses showed the translation equations and correct substitution. Moreover, such		
Better	responses showed the simplification and evaluation of correct values of h and k , hence the		
Responses	correct transformed equation was obtained.		

Image of Better Response	x = x + h, $y = Y + k$		
L	Substituting in given equation,		
	$(X+h)^{2} + 5(Y+k)^{2} - 2(X+h) + 10(Y+k) + 5 = 0$		
	$x^{2} + 2xh + h^{2} + 5y^{2} + 10yk + 5k^{2} - 2x - 2h + 10y + 10k + 5=0$		
	$x^{2}+5Y^{2}+h^{2}+5k^{2}+5+10k-2h+x(2h-2)+Y(10k+10)=0$		
	• $\chi(2h-2) = 0\chi$ • $\chi(10k+10) = 0\chi$		
	2h-2=0 $10k+10=0$		
	h=1 k=-1		
	O'(h, K) = (1, -1) (new origin) 0 0		
	$\frac{x^{2}+5y^{2}+(1)^{2}+5(-1)^{2}+5+10(-1)-2(1)+x(2(1)-2)+y(10(-1)+10)=0}{2}$		
	$x^2+5y^2-1=0$ (transformed equation)		
Description of Weaker Responses	Weaker responses showed that candidates were not clear about the transformation equations when translation was required. Such responses showed that candidates links transformation with slope. Moreover, though such candidates used the transformation equation, however, they could not make the substitution and left simplification incomplet		
Images of weaker	Image (i)		
Response	$\frac{(X+h)^{2}+5(Y+k)^{2}-2(X+h)+10(Y+k)+5=0}{(X+h)^{2}+5=0}$		
	$(X+h)^{2}+5(Y+le)^{2}-2X-2h+10Y+10k+5=0$		
	$(x+y)^2 + 5(y+y)^2 = 0$		
	X=1 , Y=-1c		
	(-m,-k)		

Г

Image (ii) <u>n tloy</u> orign d 010 line 54 i \$i11 ange Sope remain degree remove h ę۸ =6 ٣i -1)+(4-5)+5=0

How to Approach SLO		Pedagogy Used for that SLO	Assessment Strategies
•	Understand the expectations of the command words Look at the cognitive level Identify the content that is required to answer that question (both in terms of understanding of concepts and any skills that may be required like analysing or evaluating) Go through the past paper questions on that particular concept Refer to the resource guide for extra resources	 Story Board Cause and Effect Fish and Bone Concept Mapping Audio Visual resources Think, Pair and Share Questioning Technique (Socratic approach) Practical Demonstration 	 Past paper questions Discussion on E-Marking Notes AKU-EB Digital Learning Solution powered by Knowledge Platform https://akueb.knowledgeplatform.com/login
A Fo	ny Additional Suggestion: ollowing are some interactive ands-On Manipulatives: Provi	teaching strategies for teaching de students with physical obj	ng translation and rotation. ects like blocks or geometric shapes. Let them

physically translate (slide) and rotate (turn) these objects to understand the concepts intuitively.

Whiteboard Demonstrations: Use a whiteboard or a digital whiteboard and demonstrate translations and rotations using drawings. Encourage students to participate by drawing their own translations and rotations. Peer Teaching: Assign pairs or small groups of students to teach each other about translation and rotation. Encourage them to come up with their own explanations and examples.

Real-Life Examples: Show how translation and rotation are used in real life. For example, you can discuss how these concepts are used in architecture, design, robotics, or video game development.

Interactive Software Tools: Use interactive software tools like GeoGebra or Desmos to demonstrate translation and rotation concepts. These tools often allow students to manipulate objects and see how they change

Question No. 9a			
Question Text	Find the direction cosines of the vector $v = i - 3j + k$.		
SLO No.	24.3.7		
SLO Text	Find direction cosines of a vector.		
Max Marks	3		
Cognitive Level	A		
Checking Hints	 mark for calculating the magnitude of the vector. mark for finding the unit vector in the direction of the given vector. mark for extracting the direction cosines. 		
Overall Performance	Most candidates attempted this question successfully found all the direction cosines for a given vector, demonstrating a clear understanding of the concept. However, a subset of the candidates only partially solved the question.		
Description of Better Responses	Better responses showed that candidates calculated the cosines of all the three angles separately by applying the related formula. Firstly, they calculated the magnitude of the given vector and divided the coefficients of i, j and k vectors. Hence, the candidates could identify the cosines from the result.		
Images of Better Responses	Image (i) $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{$		

Image (iv) know that ŝÁ Ka ave arre have 6197 have dire iffes orite opposite direction.

How to Approach SLO	Pedagogy Used for that	Assessment Strategies
	SLO	
 Understand the expectations of the command words Look at the cognitive level Identify the content that is required to answer that question (both in terms of understanding of concepts and any skills that may be required like analysing or evaluating) Go through the past paper questions on that particular concept Refer to the resource guide for extra resources 	 Story Board Cause and Effect Fish and Bone Concept Mapping Audio Visual resources Think, Pair and Share Questioning Technique (Socratic approach) Practical Demonstration 	 Past paper questions Discussion on E-Marking Notes AKU-EB Digital Learning Solution powered by Knowledge Platform https://akueb.knowledgeplatform.com/login

Any Additional Suggestion:

By implementing these teaching methodologies, candidates should have a better chance of improving their understanding and performance when it comes to solving problems related to direction cosines of vectors. Visual Aids and Diagrams: Utilise visual aids and diagrams to help candidates visualise vector directions and their cosines. This can make abstract concepts more concrete.

Step-by-Step Approach: Teach a systematic step-by-step approach to finding direction cosines, emphasising the importance of each step in the process.

Real-Life Applications: Connect the concept of direction cosines to real-life applications or scenarios, showing why it's relevant and useful.

Problem Variations: Introduce variations of direction cosine problems, so candidates become adept at applying the concept to different scenarios.

	Outstion No. 0h		
Candid	Candidates were given the choice to attempt any ONE out of the two questions: 9a and 9b		
Question Text	Two vectors are defined as $w = 2i + 3i - k$ and $v = i + i + 2k$, having magnitudes $\sqrt{14}$ and		
	$\sqrt{6}$ method we will solve $\sqrt{1}$ and $\sqrt{-1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ and $\sqrt{1}$		
SLO No	24.3.10		
SLO Text	Find the projection of a vector along another vector		
Max Marks	3		
Cognitive	A		
Level			
Checking	1 mark for dot product		
Hints	1 mark for cosine		
Orvenall	I mark for projection Most of the condidates mimorily attempted this question, these who did appears with this		
Performance	question and addressed its requirements correctly were able to score full marks. However		
I errormunee	it is noteworthy that a significant portion of the candidates who tackled this question only		
	partially solved it, demonstrating gaps in their understanding of vector projection concepts.		
	Among the weaker responses, some candidates struggled to exhibit any comprehension of		
	vector projection, while others, although on the right track, made calculation errors that		
Description of	affected the accuracy of their solutions.		
Description of Retter	Better responses showed all the necessary working and application of the formula. Also, in		
Responses	better responses, no euleuration errors were round.		
Images of	Image (i)		
Better			
Responses	$w = 0$ any trule = $\sqrt{[2]^2 + [3]^2 + [-1]^2} = \sqrt{[4]}$ $ w = 2i + 3 = 110$		
	W = magnitude = V[9+(9+(9+(9+(9+(9+(9+(9+(9+(9+(9+(9+(9+(9		
	VILY VILY VILY VILY		
	v = maynih de = 1(0 + (1) + (2) = 16		
	$ W = 16 2i + 3i - k - 6\sqrt{2}i + \sqrt{63}i$		
	$V_{i} = k + i + 2 K$ $V_{i} = V_{i} = m^{2}$		
	4.18 18 418 - Jek		
	$\frac{1}{1}$ $\frac{1}$		
	UNE VIA (= + =) + = K) = Y= + + + + + + + + + + + + + + + + +		
	$(1, 1, 1, 1) = (1, \overline{1}^2, \overline$		
	Dujetin = W.V = 6JZL + 1032 - 16 1(- 1/141 + 1/14? + 2/14/16 - 61ZL + 163)		
	VI 114 114 116 18 10 114 114		
	(VIY] + VIY] + 2JIY (2) / NO G A		

	Image (ii)		
	$\overrightarrow{W} \overrightarrow{X} \overrightarrow{V} = 1 j K \qquad \qquad$		
	=1()-][5)+(-)		
Description of	Lack of Understanding in Vector Projection:		
Weaker	This section highlights instances where candidates struggled to grasp the fundamental		
Responses	concepts related to vector projection, resulting in incomplete or incorrect responses.		
	Partial Correctness with Calculation Errors:		
	In this category, we examine responses that partially addressed vector projection questions		
	correctly. However, these responses are marked down due to the presence of calculation		
Image of	(b) $- 14/2$ $- (2i+3i-k) \cdot (i+i+2k)$		
weaker	V		
Response	$(1) = 2(10) + 3(10) - 2(k \cdot k)$		
	$7 + 3 - 2 = 3 - An_s$		
	m_{1} multiple of using $ V = \sqrt{(1)^{2} + (1)^{2} + (2)^{2}}$		
	$W \circ V = 3$ = $\sqrt{6}$ And		
	14 16 2		

How to Approach SLO	Pedagogy Used for that SLO	Assessment Strategies
 Understand the expectations of the command words Look at the cognitive level Identify the content that is required to answer that question (both in terms of understanding of concepts and any skills that may be required like analysing or evaluating) Go through the past paper questions on that particular concept Refer to the resource guide for extra resources 	 Story Board Cause and Effect Fish and Bone Concept Mapping Audio Visual resources Think, Pair and Share Questioning Technique (Socratic approach) Practical Demonstration 	 Past paper questions Discussion on E-Marking Notes AKU-EB Digital Learning Solution powered by Knowledge Platform https://akueb.knowledgeplatform.com/login

Any Additional Suggestion:

By implementing these teaching strategies, candidates should have a better chance of improving their understanding and performance when it comes to solving problems related to vector projection along another vector. Additionally, addressing common errors and misconceptions will help candidates avoid making similar mistakes in the future.

Visual Representation: Use visual aids and diagrams to illustrate vector projections. Show how the projection relates to the angle between the vectors.

Geometric Interpretation: Explain the geometric interpretation of vector projection, emphasising that it represents the shadow of one vector on another.

Real-World Applications: Connect vector projection to real-world applications, such as physics, engineering, or computer graphics, to make it more relevant and engaging.

Interactive Learning: Use interactive tools or software to demonstrate vector projection in real-time, allowing candidates to manipulate vectors and observe the results.

Practice with Different Scenarios: Offer a variety of problems involving vector projection, including cases with different angles and magnitudes of vectors.

Error Analysis: Analyse common calculation errors made by candidates in the past and address these errors explicitly in the teaching materials.

Annexure A: Pedagogies Used for Teaching the SLOs

Pedagogy: Storyboard

Description: A visual pedagogy that uses a series of illustrated panels to present a narrative, encouraging creativity and critical thinking. It helps learners organise ideas, sequence events, and comprehend complex concepts through storytelling.

Example: In a Literature class, students are tasked with creating storyboards to visually retell a novel. They draw key scenes, write captions, and present their stories to the class, enhancing their reading comprehension and fostering their imagination.

Pedagogy: Cause and Effect

Description: This pedagogy explores the relationships between actions and consequences. By analysing cause-and-effect relationships, learners develop a deeper understanding of how events are interconnected and how one action can lead to various outcomes.

Example: In a History class, students study the causes and effects of the Industrial Revolution. They research and discuss how technological advancements in manufacturing led to significant societal changes, such as urbanisation and labour reform movements.

Pedagogy: Fish and Bone

Description: A method that breaks down complex topics into main ideas (the fish) and supporting details (the bones). This visual approach enhances comprehension by highlighting essential concepts and their relevant explanations.

Example: During a Biology class on human anatomy, the teacher uses the fish and bone technique to teach about the human skeletal system. Teacher presents the main components of the human skeleton (fish) and elaborates on each bone's structure and function (bones).

Pedagogy: Concept Mapping

Description: An effective way to visually represent relationships between ideas. Learners create diagrams connecting key concepts, aiding in understanding the overall structure of a subject and fostering retention.

Example: In a Psychology assignment, students use concept mapping to explore the various theories of personality. They interlink different theories, such as Freud's psychoanalysis, Jung's analytical psychology, and Bandura's social-cognitive theory, to see how they relate to each other.

Pedagogy: Audio Visual Resources

Description: Incorporating multimedia elements like videos, images, and audio into lessons. This approach caters to different learning styles, making educational content more engaging and memorable.

Example: In a General Science class, the teacher uses a documentary-style video to teach about the solar system. The video includes stunning visual animations of the planets, interviews with astronomers, and background music, enhancing students' interest and understanding of space.

Pedagogy: Think, Pair, and Share

Description: A collaborative learning technique where students ponder a question or problem individually, then discuss their thoughts in pairs or small groups before sharing with the entire class. It fosters active participation, communication skills, and diverse perspectives.

Example: In a Literature in English class, the teacher poses a thought-provoking question about a novel's moral dilemma. Students first reflect individually, then pair up to exchange their opinions, and finally participate in a lively class discussion to explore different viewpoints.

Pedagogy: Questioning Technique (Socratic Approach)

Description: Based on Socratic dialogue, this method stimulates critical thinking by posing thought-provoking questions. It encourages learners to explore ideas, justify their reasoning, and discover knowledge through a process of inquiry.

Example: In an Ethics class, the instructor uses the Socratic approach to lead a discussion on the meaning of justice. By asking a series of probing questions, the students engage in a deeper exploration of ethical principles and societal values.

Pedagogy: Practical Demonstration

Description: A hands-on approach where learners observe real-life applications of theories or skills. Practical demonstrations enhance comprehension, skill acquisition, and problem-solving abilities by bridging theoretical concepts with real-world scenarios.

Example: In a Food and Nutrition class, the instructor demonstrates the proper technique for filleting a fish. Students observe and then practice the skill themselves, learning the practical application of knife skills and culinary precision.

(**Note:** The examples provided in this annexure serve as illustrations of various pedagogies. It is important to understand that these pedagogies are versatile and can be applied across subjects in numerous ways. Feel free to adapt and explore these techniques creatively to enhance learning outcomes in your specific context.)

Acknowledgements

The Aga Khan University Examination Board (AKU-EB) acknowledges with gratitude the invaluable contributions of all the dedicated individuals who have played a pivotal role in the development of the Mathematics HSSC-II E-Marking Notes.

We extend our sincere appreciation to Ms Shahneel Jawaid and Mr Mukhtar Ali Khan, Specialist and former Specialist in Mathematics at AKU-EB, for taking subject lead during the entire process of e-marking.

We particularly thank to Mr Faizan Ahmed, Senior Marker, Aga Khan Higher Secondary School Karimabad, Karachi, and Mr Zafarullah Qureshi, Senior Marker, D. J. Sindh Government Science College, Karachi for evaluating each question's performances, delineating strengths and weaknesses in candidates' responses, and highlighting instructional approaches along with recommendations for better performance.

Additionally, we express our gratitude to the esteemed team of reviewers for their constructive feedback on overall performance, better and weaker responses, and validating teaching pedagogies along with suggestions for improvement.

These contributors include:

- Dr Sumera Anjum, Lead Specialist, Curriculum Development, AKU-EB
- Abdul Raheem Daudani, Lead Specialist, Curriculum Development, AKU-EB
- Rabia Nisar, Specialist in Assessment, AKU-EB
- Munira Muhammad, Lead Specialist, Assessment, AKU-EB
- Zain Muluk, Manager, Examination Development, AKU-EB
- Raabia Hirani, Manager, Curriculum Development, AKU-EB
- Ali Aslam Bijani, Manager, Teacher Support, AKU-EB
- Dr Shehzad Jeeva, CEO, AKU-EB